- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001100000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, H (2)
-
Thompson, PM (2)
-
Zhan, L (2)
-
Bao, R (1)
-
Dai, S (1)
-
Guo, L (1)
-
Leow, A (1)
-
Liu, G (1)
-
Liu, Y (1)
-
Tang, H (1)
-
Wang, Y (1)
-
Ye, K (1)
-
Zhang, Y (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multimodal medical image synthesis is an important task. Previous efforts mainly focus on the task domain of medical image synthesis using the complete source data and have achieved great success. However, data collection with completeness in real life might be prohibitive due to high expenses or other difficulties, particularly in brain imaging studies. In this paper, we address the challenging and important problem of medical image synthesis from incomplete multimodal data sources. We propose to learn the modal-wise representations and synthesize the targets accordingly. Particularly, a surrogate sampler is derived to generate the target representations from incomplete observations, based on which an interpretable attention-redistribution network is designed. The experimental results synthesizing PET images from MRI images demonstrate that the proposed method can solve different missing data scenarios and outperforms related baselines consistently.more » « less
-
Ye, K; Tang, H; Dai, S; Guo, L; Liu, Y; Wang, Y; Leow, A; Thompson, PM; Huang, H; Zhan, L (, Lecture Notes in Computer Science)The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.more » « less
An official website of the United States government

Full Text Available